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S U M M A R Y  
To provide an isothermal, deterministic theory of anisotropic rods is the primary objective of this paper. Our starting 
point is the 3-D linear theory of micropolar elastodynamics. First, the governing equations of the theory are established 
by the use of a suitable averaging procedure together with a separation of variables solution for kinematic variables. 
Next, without making the usual definiteness assumption for the strain energy density, a dynamic uniqueness theorem 
is constructed for the solutions of the governing equations. Logarithmic convexity arguments are then used to enumer- 
ate a set of conditions sufficient for uniqueness. The theory includes the effects of warping and shearing deformations, 
and in fact, it incorporates as many higher order effects as deemed necessary in any special case. Also, the application 
of the theory is illustrated in a sample example. 

Notation 

Throughout  the text, we use standard Cartesian tensor notation in an Euclidean 3-space g. 
The micropolar rod is embedded in this space. Einstein's summation convention is implied for 
all repeated Latin indices (1, 2, 3) and Greek indices (2, 3) unless indices are enelosed with 
parentheses. A comma followed by an index stands for partial differentiation with respect to 
the indicated coordinate x k. A superposed dot denotes time differentiation. A single prime is 
used to designate partial differentiation with respect to the axial coordinate x 1 _=z. A star 
indicates prescribed quantities. Further, the Cartesian product of a region ~ and the time 
interval [to, T) is denoted by ~3 x [to, T), where T > t o may be infinity. The symboI ~ (t) refers 
to the region ~ at time t. 

Nomenclature 

Xk~ X 1 ~Z~ Xe 

~ , ~ ,  a ~  
SPa, 5P, 

L 
d 

~ , 6  e 
6el, b~ 
d r ,  sr 
dv, dA, ds 
hi,  vi 
t 
tkl, mkl 

fi, li 

P, Jkl 

Ui, (~i 

Euclidean 3-space 
a system of right-handed Cartesian coordinates in d ~ rod axis, lateral 
coordinates; k = 1, e (c~ = 2, 3) 
a regular region of space in g, its closure and boundary surface 
complementary subsets of g~,  on which deformations and stresses are 
prescribed, respectively; 5P d • 5P~ = 5 P, J d  C~ 5g~ = 0 
length of rod 
area of cross-section of rod 
a Jordan curve which bounds s /  
entire volume of rod and its boundary surface 
lateral surface of rod, surface portion of 5P~ on which stresses are prescribed 
right and left faces of rod 
element of volume and area on d ,  and line element along cg 
unit exterior normal vectors to 5 p and 
time 
components of stress and couple stress tensors 
body force and body couple vectors per unit volume 
mass density, components of microinertia tensor 
displacement and microrotation vectors 
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(9 
(~kl, ~klm 
ti, mi 
~:kl, ekl 
Cklmn, Dkhnn 
Bkl 
2,# 
~, fl, 7, ~c 
B 
di, dkl 
Tk~,"), M~kT, n) 
Tk(m, n) Mk(m, n) 
d~ m,n) ' d(k,~, n) 

Flm,n) El . . . .  ) 
UI m,n), (~I m,n) 
p!m.,), QI .... ) 

~2, J{, P, Q, w, q5 
Vo 
K , W  
V,U 
Q 
c(m, n) 

a(t)  
( )  
()' 
E, v 

prescribed steady temperature increment 
components of Kronecker's delta and alternating tensor 
stress and couple stress vectors 
components of strain and infinitesimal strain tensors 
components of isothermal elastic stiffnesses 
thermal coefficients of material 
LamCs elasticity constants 
elastic moduli of microisotropic continuum 
coefficient of linear thermal expansion 
U i o r  (Di, ~kl or ekl and/or 7kl 
components of stress and couple stress resultants of order (m, n) 
components of stress and couple stress vector resultants of order (m, n) 
components of deformation (u~ m'"), ~0~k m'")) and strain (e~] 1'"), e~T '"), 7 ~ ' )  
of order (m, n) 
body force and body couple resultants of order (m, n) 
displacement and microrotation resultants of order (m, n) 
effective loads of order (m, n) 
r]~ ~ M]~ ~ pi ~176 Qi~176 U]~176 (p(lo, ~ 
rod velocity, (E/p) ~ 
kinetic and potential energy densities 
kinetic and potential energies per unit length of rod 
total energy of rod 
functions with derivatives of order up to and including (m) and (n) with 
respect to space coordinates and time, respectively 
logarithmic convexity function 
time differentiation, ~?/&( ) 
partial differentiation with respect to the axial coordinate, O/c?z ( ) 
Young's modulus, Poisson's ratio 

1. Introduction 

In the literature of recent years, considerable attention has been focused on the formulation of 
the one- and two-dimensional continuum theories by the reduction of the 3-D elastodynamics. 
In regard to the literature on this study, though by no means exhaustive, we mention, in 
particular, two recent works : an excellent article on the present status of rods [1] and a general 
theory of elastic non-polar beams [2]. The latter work is now supplemented and amplified to 
govern all the types of motion of anisotropic rods on the basis of the 3-D linear theory of 
micropolar elastodynamics. 

In what follows, we consider a slender micropolar rod of uniform cross-section. By a micro- 
polar rod we simply mean a rod made of certain class of materials with microstructure. Due to 
its granular and fibrous structure, this type of materials can support couple or moment stresses, 
and its deformations at each point consist of both displacements and microrotations (see, e.g., 
[3] and references therein). Throughout the micropolar rod space, we take for granted that all 
stresses and deformations are continuous. Further, we assume that all the field quantities do 
not vary widely over the cross-section of the rod. Owing to these considerations, we use a 
separation of variables solution for kinematical variables and a suitable averaging procedure, 
with automatic rationality of the resultant one-dimensional rod theory. The theory gives rise 
to new types of waves not encountered in any of the classical rod theories. In particular, the 
nature of extensional waves is discussed in a simple example. 

Briefly stated, a r6sum6 of the basic equations of linear micropolar elasticity theory is 
presented in the next section. Section 3 deals with the geometry and deformations of rod. The 
one-dimensional, higher order theory is systematically established in Section 4. Bernoulli's 
theory of micropolar rods is obtained as a special case of the isotropic theory in Section 5. 
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A sample example is then carried out in detail to illustrate simply the application of this 
approximate theory. In Section 6, the initial and boundary conditions sufficient for a unique 
solution of the governing equations of the isothermal theory are examined by the use of 
logarithmic, convexity arguments. The results are briefly discussed in the last section. 

2. Linear fundamental equations 

In this paper all the field equations are evidently supposed to be small so that the linear govern- 
ing equations of micropolar elasticity theory can be applied. We then summarize, as already 
established, the following basic equations of the linear theory. A complete account of these 
equations is given, for instance, in [3, 4]. 

When the motion of micropolar continuum ~ + 0N with boundary 0N (0~ = cJ d u 5e~, 
Sea c~ 5% = 0) is referred to a xk-fixed system of rectangular Cartesian coordinates in the 
Euclidean 3-space g, we may express the local balance of momenta: 

tk"k+f'--PiJ' = 0 .. }on Mx [to, T ) (2.1) 
mkl,k -~- ~:lkm tkm @ Ii - P Jkl (t9 k = 0 

the constitutive equations for an anisotropic body : 

tk, = Ckl~ne~n+ Bk~ O } on M • [to, T) (2.2) 
mkl = Dlkmn ~mn 

with 
Cklm n = Cmnkl, Dklm n = Dmnk I (2.3) 

the strain-deformation relations : 

7mn =- (/9 . . . .  f on B x [to, T) (2.4) 
Ski = Ul, k "~- ~lkm (pro) 

the boundary conditions : 

Uk--U* = 0,  ~0 k -  ~0" = 0 on 6ea • [t 0, T) 
and 

t k -  t~ = 0,  m k -  m* = 0 on 6e, x [to, T) 
with 

t l = n k t k l ,  m l = n k m k l  

and a Cauchy data of the form 

U k (X i, to) - -~(Xl)= 0,  fik (Xi, to)--fl*(Xi)= 0 [ on ~(to) (2.8) 
~pk(X,, to)--y* (Xl)= 0,  ~bk(Xl, t0)--6* (Xl)= 0 J 

for the initial conditions. In the above equations, tkl , mk,, t i and mi, in this order, denote the 
components of the stress and couple stress tensors, and the stress and couple stress vectors. 
p is the mass density, u i the displacement vector, fi the body force vector, eklm the components 
of the alternating tensor, q~i the microrotation vector, li the body couple vector, Jk, the compo- 
nents of the microinertia tensor. Cklmn and Dklmn stand for the components of the isothermal 
elastic stiffnesses, ek~ and 7k, for the components of the strain tensor, O for a prescribed steady 
temperature increment, and Bk, for the thermal coefficients of material. 6Pa and 5e~ are the 
complementary regular subsurfaces of ~ ) ,  where the deformations and the stresses are pre- 
scribed, respectively, and n i is the unit exterior vector normal to 0~. Further, u*, c~* and fl*, 
(P*, 7* and 6", t* and m* are used to designate the prescribed vector functions. 

Moreover, let ~li~ C(1'2), ~Di~ C (1'2), f~ r C (~176 l i e  C (~176 tklE C (1'~ mklE  C (1'~ 8klE C (~176 and 
7k, E C (~176 Here, C (m'n) represents the functions with derivatives of order up to and including 
(m) and (n) with respect to the space coordinates and time, respectively, provided that the 
functions and their derivatives exist and are continuous on ~ • [to, T). ~ indicates the closure 
of the regular region of space ~ ~ g at t = t o. 

(2.5) 

(2.6) 

(2.7) 
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We also note that the constitutive coefficients in Equations (2.2), when specialized to iso- 
tropy, are of the form : 

Cklmn = )L t~kl t~ mn -~- (~  -~-/~) r 31 n -~- ].L 6kn film 

Dklmn = (Xt~k13mn+ flt~kn31m+ ~(~km31n ~ (2.9) 

Bkl = B3kl 

where 2 and # denote Lam6's elasticity constants, B the coefficient of linear thermal expansion, 
and ~, fl, Y and ~: are the four additional elastic moduli for micropolar continuum. In view of 
Equations (2.2) and (2.9) the isotropic constitutive equations may be expressed as 

tkl = ~err~kl+ (12-1- K)~kl-~- l/2~ik-- BObk l  1 
mkl = 0~Yrrfkl+flTkl+Y])lk J on M x [to, T) (2.10) 

with the linear strain tensor : 

ekl : �89 (Uk,1 2i- Ul,k) on ~ • It o, T) (2.11) 

In addition, we recall that the microinertia tensor becomes Jkl = Jfkl where J being a constant, 
for the microisotropic solid. 

3. Kinematics 

With reference to the Xk-system of Cartesian coordinates in the Euclidean 3-space 8, we consider 
a thin cylindrical rod ~ + 50 with its smooth boundary surface 5 e, bounded by the right and 
left plane faces, ~ r  (X1 ~--- L) and d l  (~1 = 0), and the lateral surface 6el (f(x~) = 0). The xk-axes are 
located at the centroid of the initial cross-section of rod ; the x i-axis is chosen to be the centro- 
idal rod axis, while the x,-axes indicate the principal axes of cross-sections. 

The deformation components dk (Uk or Cpk ) of a generic point P(x~)e ~/" under the usual 
assumptions of rods, can consistently be represented as 

M=oo S=oo 
dk(Xi, x , , t  ) = ~ ~ P~)(x=)Qn~)(x3)d~m'")(xl,t)on ~/'X[to, T ) (3.1a) 

m=O n=O 
with 

P~)(x2) = xT, Qn~)(x3)= X~ (3.1b) 

in which the vector functions dlm'n)~ C (1'2) are taken to exist, and they are as yet undetermined 
and independent functions in the rod length ~e. Equations (3.1) clearly treat the rod as being a 
one-dimensional continuum. Further, the deformation field is sufficiently general to abrogate 
the usual Bernoulli-Euler hypotheses of rods (see, e.g., [5,6]), and hence there is no need to 
include the customary correction factors [5,7]. 

In view of Equations (2.4) and the series expansions (3.1), we obtain the strain distribution 
of the form: 

M N 
dkz ~ E vm vn  el(re 'n)Iv t )  (3 .2)  

m=O n=O 
where 

2e(m, n) = Ul~(m, n)(~11 -~- Ul (m, n ) ~ l k  -~- ( m  -~- 1 ) ( u  (m + 1, n)r 21 -~- Ul rn+ 1, n)(~ 2 k ) 

+ (n + l~/n(m,n+ I).~ _t_ n(m,n + 1).~ 
x} ~u k v31 t ~1 ~3k /  

/ • ( m ,  n) . . . .  (m,n)-t_ ~,' (m,n) A _a_/rn -t- 1) u}m + 1,n) ~2 k kl - -  ~ W'p ~ 1  Vlk  ~ t, xxl [ 
+ (n + 1)ul m' n+ 1)C53k 

~[T,") - - ~0~(m'")~i1 + ( m +  1)~o[m+ 1'n)~2,+ (n + 1)~o~m'n+ 1)~31 

In Equation (3.2), dkl is used to denote ekl, ekl and 7kl. 

on ~e x l-t0, T) (3.3) 
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4. Rod equations 

In this section, using the deformation field (3.1) together with a suitable averaging procedure 
[8,9] as a starting point, we construct the complete set of the micropolar rod equations from 
the 3-D equations of Section 2. 

4.1. Rod equations of motion 

To begin with we multiply the local equations of motion (2.1) by x~x~ and integrate over the 
cross-section of the rod, ~4. After converting some of the surface integrals over d to the line 
integrals around the contour cg by applying Green's transformation theorems, we then obtain 
the rod equations of motion : 

T, (m, n) r o T ( m -  1, n) n T ( m ,  n -  1) _t_ o(m, n) __ Df.J(km,n) = _ 0  ~ 0 lk  - -  xxX--2k - -  xa J" 3k ~ Xk 
n 5r x [to, T) (4.1) 

"lk/[r (re,n) r~ ]k/[(m- 1, n) n ]k / l (m,n-  1) _1_ e T(m,n) ) 
xvat lk  - -  xuxv~t2k x.xv~t3k ~ Oklp--lp 

q._ Q(m,n)__PJ lk (~Im,  n) = 0 

Here, we have defined the stress and couple stress resultants of order (m, n): 

(T(kr~ 'n), M(kT'")) = ~ X~X~(tkl , mk,)dA (4.2) 
2 

the aerial moment of inertia of order (m, n): 

imn = ~ x~x.~dA (4.3) 
3 d 

the acceleration resultants of order (m, n): 

M N 
( lJ (m,n) ,  (~(m,n)) : Z Z A m + w n + q ( i j ( k p ' q ) ,  ~ (P 'q ) )  (4 .4 )  

p=O q=O 

the body force and body couple resultants of order (m, n): 

(F !  re'n), E l  re 'n)) --- f x ~ x ~  (fi, li)dA (4.5) 
,.gff| 

the boundary forcing terms of order (m, n), arising from the moments of applied tractions and 
surface couples o n  ~1 as 

S (re,n) R(m,n) ]  = ~rs m n ( i , - - i  f X 2 x 3 ( t i ,  m i ) d s  (4 .6 )  

and finally the effective loads of order (m, n)" 
(m n) (m n) .q{m,n) P i  ' = F i  ' + - 1  , Q~m,n) = Llm, n) + R~m,n). (4 .7 )  

In the most general case, the quantities defined in Equations (4.2-7) may be functions ofx 1 and t. 

412. Constitutive relations 

With the aid of Equations (2.2) and (3.3), we find that the constitutive relations for the afore- 
mentioned stress and couple stress resultants are of the form: 

M~ N 
W(kT' n) = p=oZ q=OZ I,~'Jklrs/'g~(m+ P' n + q) e(P'q) ~- g(kT + P 'n  + q ) ~  " O ( P ' q ) ) /  

i 
on 5e x [to, T) (4.8) 

M N 
M(kq TM Z Z l l ( m  + P' n + q)'f(P'q) = JJklrs t r s  

p = 0  q = 0  
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Here, we have introduced the heterogeneous rod stiffnesses : 

(( ~(m,n) l~(m,n) ]=~(m,n)] f m n(Cklrs ' Dlkrs, B k l ) d A  (4.9) "~klrs , ~klrs , ~kl  / : X2 X3 
3 

and the temperature increment in the form: 
M N 

~)(Xi) : 2 Z X~aX~{~)(m'n)(x1) (4.10) 
m=O n = O  

In the case of isotropic micropolar material, the generalized linear constitutive relations (4.8) 
reduce to 

M N 

T(kT '")= E E 
p=O q=O 

M N 

Mtk~ 'm E Z /~(P'q)"~ -L/')~'(P'q)• = i,~/rr ~kl ~ / J  fkl t f/:lk ]fXm+p,n+q 
p=0,q=0 

in which Equations (2.9) are employed. 

4.3. Boundary conditions 

akl+(#+K)g(Pl "q)+''~176 Vklj3A m+p,n+q / 

on ~ X [ t o ,  T) 

(4.11) 

Let ~ d  stand for some portion of the lateral surface ~ 1 ,  and ~ ,  for the remaining portion S: t 
of ~:G~ 1 and the right and left faces sr r and d~,  of the rod, that is, 

~/~d t.) ~ t  = ~ 1  , ~Pd ("5 ~'O t = 0 ; ~90~ = ~9 O ('3 ~ t  = ~'Od k.) ~ r  t.) ~ 1  

In conjunction with Equations (2.5) and (3.1), we may write the deformation boundary 
conditions as 

u ! m ' n ) - - u ~ ( m ' n ) = 0 ,  (t0~m'n)-- q)~ (m'n) = 0 o n  ~Pd X [to, T )  (4 .12)  

Now, after multiplying by x~x~ Equations (2.6) are readily integrated, and then the traction 
boundary conditions are explicitly stated on the lateral surface: 

s . ( m , n )  ~ q(m,n) 0 u*<m,.) ,, r'( .... ) 0 on ~ t  • [to, T) (4.13) 

and on the faces sr (nl -- + 1) and Nl (n  1 -- - 1) of rod: 

T,(m,n) • T(m,n) 0 ~][*(m,n)__n ]~ff(m,n) {~1,  d r }  X [to, T) (4.14) k - - l ' l - - l k  = , ~**k ,M**.Llk = 0 o n  

Here, v i is the unit exterior vector normal to the contour ~,  and 
~ m n * (Sr (re'n), i * (m'n)) = V~X 2 x3 (t~k, m*k)dS ,  

I, xk(T*(al'n), x'xk]kff*(m'n)h] = j~ x2 x3 (tk,m,, m*)dA (4.15) 

are also defined. 
It is noteworthy, in conjunction with Equations (4.6) and (4.15), to have the relations: 

S(k m'n) = 1'~ S(~ 'n), *'kl~ (m'n) ---- re" *~-~kK) (m'n) (4.16) 

4.4. Initial conditions 

The foregoing equations are further supplemented by a set of initial conditions of the form : 
(m,n) .(m,n) __ �9 (m,n) * (m,n) __ 

U i (Xl, to)--~X i ( X l ) -  0 ,  U i (Xl, t o ) - - f l i  ( X l ) -  0 
(re, n) * (m,n) __ �9 ( m , n )  .'Ir (m, n) _ o n  ~ ( t o )  (4.17) x , t  x 0 x t 3 x 0 ( J -  , o ) -  , ( J 

which follow readily from Equations (2.8) and (3.1). 
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4.5. Theory of micropolar anisotropic rods 

The system of the kinematic relations (3.1-2), the macroscopic equations of motion (4.1), the 
constitutive relations (4.8), the boundary conditions, (4.12)-(4.14), and the initial conditions 
(4.17) consntutes the governing equations of a higher order, isothermal, linear theory of 
micropolar anisotropic rods. This system consists of an infinite number of equations in an 
infinite number of unknown functions; in order to construct a deterministic theory, we truncate 
the governing equations by the condition m E [0, Mo] and n~ [0, No]. Here, M o and N O are 
finite numbers which are chosen for a particular problem. 

5. Example 

To illus~l~te the possible truncation in the higher order theory of the previous section, we study 
here irlqdetail the zeroth order isotropic theory and supplement this by a simple example. 
To begin with we explicitly state the linear isotropic theory of order (0, 0), that is to say, 
Bernoulli's theory of micropolar rods (cf., [2,5] ). Following D6kmeci [2] for nonpolar case, 
we retain only T(l~ '~ M(l~176 and o(o,o) ,(o,o) ~ , ~(kk), and set all the remaining rod quantities including 
temperatures equal to zero. Hence we may write out the constitutive relations (4.11) in the form : 

T(lO~ o) = A [2e~ ~ o)+ (2# + K)e~ ~176 = Jg" ] 
T(0,0) A [2e(o,o) + (2# ao.ol = +~c)e~=) ] 0 
" ' = )  = ( 5 . 1 )  
M(l~176 = A (o o) (o,o~ [(X~rr' -}-(~-~-~)~ i i ] =~4r 
KA-(O, o) (0 O) (0,0)  = ] = o  ~,.(=) A 

the strain-deformation relationships (3.3): 

e(io~o) = u , l (o ,o) ,  . ( o , o )  _ , , (1 ,o)  o ( o , o ) _  . ( o , 1 )  
~  - - 2  , - 3 3  - - 3  J (5.:2) 

7(o /o )  = go~(o,o), . , (o ,o)  _ ~ . ( i , o )  . ( o , o ) _  . . ( o , a )  
g 2 2  - -  W2 ~ / 3 3  - - " g 3  

and the rod equations of motion (4.1): 

JV '+  P -  pA/i, = 0,  d / / '+  Q -  p J(} = 0 (5.3) 
where 

w = u(1 ~176 , P = P(1 ~176 , q5 = (o(1 ~176 , Q = Q(1 ~176 . (5.4) 

With the help of the second and fourth of Equations (5.1), we compute the relations: 

22e(1~176 v (~176 - 2a7(1~ ~ (5.5) 
e(~176 = - (22+2#S5~) . . . .  2 a + f l + y "  

Inserting these relations into the first and third of Equations (5.1) and using Equations (5.2) 
and (5.4), we obtain JV" and ./g as follows: 

JV" = AEow' , J/{ = AFoq~' (5.6) 
where 

_ Eo #o (2#0 + 32) Z o - (5.7a) 
#o+2  ' 2c~+flo 

together with the relations [3] : 

3a+f l  o > 0 , # o - - - # + ~ : / 2  > 0 , 2 7 > f l o - f i + y  > 0 , 2 # o + 3 2 > 0 , K  > 0 , ~  > 0  (5.7b) 

Thus, Equations (5.3) and (5.6) enable us to write Bernoulli's equations of motion for micro- 
polar rods in terms of the deformation components, of the form : 

P 1 
w" + AE ~ C~ @ = 0 } 

q y , _  Q 1 
AF ~ C2 ~ = 0 

( 5 . 8 )  
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318 M. C. D6kmeci 

with 
C~ = E o / p ,  C 2 : Fo/p (5.9) 

Here, with vanishing body forces and surface tractions, the first equation is the familiar one- 
dimensional wave equation of rods, and the second equation is the novelty of the present 
theory. Obviously, these equations are uncoupled ; they become, however, coupled in the case 
of either the anisotropic solid or the higher order theories of micropolar rods. 

For the harmonic waves with small amplitudes, propagating in the direction of the rod axis, 
x i = z, we have 

{w, qS} = {Wo, 4~o} exp2rd(qz+pt) (5.10) 

in which w o and q5 o are constants, p is the frequency of the motion, q the wave number, v = p/q 
the wave speed, and ~ = 1/q the wave length. A substitution of Equations (5.10) into the one- 
dimensional wave equations yields a longitudinal displacement wave propagating with speed 
C 1, and a longitudinal microrotation wave propagating with speed C2 whenever 2e + fl0 > 0, 
which reveals that all pulse shapes propagate without dispersion. For a material in which 
2 = # +  ~:/2 or v= .25, the wave speed C1 reduces to 

C1 = Vo = (E/p) �89 = [2#(1 + v)/p] ~ (5.11) 

which is the usual rod velocity (e.g., [10]). Here, E is Young's modulus and v Poisson's ratio. 

6. Uniqueness 

The standard device of establishing uniqueness in linear elasticity, that is, the consideration 
of the difference between two solutions arising from the same data, may be traced back to 
Fourier. The classical result for uniqueness in elasticity is credicted to Kirchhoff and its 
analogue in elastodynamics to Neumann; both of the results rely on the positive-definiteness 
of energy. In constructing uniqueness theorems, mention should also be made of logarithmic 
convexity arguments, methods involving reflection principle, and Holmgren's theorem. 
Among these, the classical energy argument, due to its familiarity and relative simplicity, is 
currently of wide use in the literature (see, for instance, [11] and the references cited therein). 
Nevertheless, without imposing a definiteness condition on the energy, we prefer the newer 
logarithmic convexity argument for its own intrinsic interest in the proof of the following 
theorem for the solutions of an initial-mixed boundary value problem. This problem is specified 
by the governing equations of the linear theory of micropolar anisotropic rods. 

Theorem : 
Given a regular region* o f  f inite rod space yr + ,9~ with b oun dar y . ~  (ST = ,5 ~ dw 5/' ~, 5~.dC~.cT ~ = O) 

in a Euclidean 3-space, then there exists at most one set o f  twice continuously differentiable vector 
.functions u i and ~o i in ~ +  5 a at to _-< t__< T, obeying Equations (3.1-2), (4.1) and (4.8), satisfying 
the boundary conditions(4.12)-(4.14), and the initial conditions (4.17). 

The proof utilizes the technique due to Knops and Payne [13] for uniqueness in 3-dimensional 
elastodynamics. As usual, we suppose the existence of two possible solutions d~ and d 2 and set 
d~ = d~ - d 2, that is, as before, u i = u I - u~ and qh = q)~ - ~ 02- By virtue of the linearity of the 
governing equations, this difference system clearly satisfies the homogeneous parts of the 
governing equations. We henceforth deal with the homogeneous equations corresponding to 
the difference system. In proving the theorem, it apparently suffices to show that the homog- 
eneous problem may possess only the trivial solution. 

Before proceeding further, we calculate the total energy of the rod. Let K and W denote the 
kinetic and potential energy densities, respectively. Thus, the kinetic and potential energies 
per unit length of the rod, V and U, may be expressed as 

* The term regular is used in the sense of Kellogg [12]. 
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v=f I61t 
where 

K = �89 Jk, q~k~l) W =  (6.2) , �89 (tk, ek~ + mk, 7,k) 

With the aid of Equations (3.1-3) and (4.2-4), these energies are found to be 
M N 

V = E 2 �89 
m = 0  n = 0  

M Y (6 .3 )  
U = E Z lI-T(m'n)"'(m'n)•177177176 T(m'n)'a(rn'n) 

2- L ~t l k  Uk ~ ~,x~'X2k T ' a  Jt 3k ] U k  ~ ~lkp J-kl tp.p 
m = 0  n=O 

+ M (1.~,.)q)~(rn,n) q_ (m M(2~- 1,.)+ n M(3.~,. - x))(/7(m, n)] 

Hence, we have the total energy of the rod, 12, is of the form : 

= j~ (V + U)dz (6.4) f2 

Also, it is worthwhile to note Schwartz's inequality in terms of functions fi (xk, t) and gi (Xk, t), 
that is, 

iS, fyv} fkgk dv _-< fk fkdv (6.5) 

for later use. 
Now, to establish uniqueness by logarithmic convexity arguments, we define the function 

G(t) by 

G ( t ) = l o g  H(t),  to < tl < t < t2 < T (6.6) 
where 

H(t) = p(ukuk+Jklg0kg01)dv, t 1 < t < t 2 (6.7) 

For all t e [to, t ~ ] and t E (t2, T), without loss of generality, we may take H (t) = 0 which clearly 
implies uniqueness. Hence we consider only an interval (t~, t2) of [to, T), in which H( t )>0 .  
Replacing the deformation components by Equations (3.1) and using Equation (4.4), we get 

L M N 
H -~- ( � 8 9  E E ( u ( m ' n ) u ( m ' n ) + J k l ( ~ ( m ' n ) f p l m ' n ) ) d z  ( 6 . 8 )  

J 0 r n = 0  n = 0  

in this interval. A time differentiation of Equation (6.8) yields 

I2I = 0 P ([](km'n)u(m'n)+Jkl(~(km'n)(p~m'n))dz (6.9) 
m = O  n = O  

and so for 

lq = 2 V + p  E E (Q(km")u(km")+Jk'(~(km'")cPlm'")) dz (6.10) 
0 m = 0  n = 0  

in which Equation (6.3) is used. I n  the equations above, the smoothness of the considered 
functions is tacitly assumed. In the last two terms on the right of Equation (6.10), we may 
substitute for the acceleration components from Equations (4.1) to obtain, 

I 4  2V -1"- Z 2 [ - / T ' ( m ' n )  m T ( m - l ' n )  n T ( m , n - 1 ) •  = L [ - - ' k  - -  a l aX2k  - -  " ' X 3 k  . S(k m , , ) )U(k  m, n) 
�9 m = 0  n : O  

+ (Mi(km,.)__ mM(2.~- 1,n) ~ / [ ( m , n -  1)_t_ r �9 T t m ,  n ) •  n)-] t dz (6.11) 
| 

- -  ax~VX3k w Oklp ~t Ip v xx k ]'4-'k J ' 

A comparison of this equation with Equation (6.3), followed by substitution from Equation (6.4), 
and an integration by parts leads to 

I~-- - 2 f 2  + 4 V d z + x + F  (6.12a) 
o 

with 
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('L M N "1 
| ~ '  ~ ,, (q(m,n)~dm,n)A_D(m,n) .~ ,dm,n) '~A~ / 

M N [ L [ (6.12b) 
F = v v /T(m,n)n(m,n)2_'lk/I-(m,n),,(m,n)]l / 

/~  /-.a ~aLlk t'tk ! XVXlk Wk ] [z 0 ) 
m = 0  la=O 

where Equations (4.16) are used. By virtue of conservation of energy and the initial conditions 
(4.17), the total energy of the system is equal to zero, i.e., f2=0. Further, we consider a case 
where F and x vanish. Thus, t:i finally becomes : 

2 "~ /TT(m'n)1 ' (m 'n)  A- l A ( m '  n) "h(m" n ) ' /A7  (6.13) 
U ~.~J k ~ k  / ~  "k'l ) ~  

�9 0 m = 0  n = 0  

in which the first of Equations (6.3) is used. 
At this point, using the derived results we form the relation : 

H2G Hfl_lCi 2 ~'T~ .... ~',cm,~-r " = 0 0 n = 0  k'l,~'Jk Uk / " k l ( l ) ( k m ' n ) ( P }  . . . .  ))dz . 

~ L  M N ~ [ r  l ( m , n ) , , ( m , n ' - L  I "~'{m' n) r~(m" n) ] t'lw ~ 
" ~,] Z E /J~, ~'-jk ~k " ~ 'tP'k '4/'1 ,M.~J 

0 m = 0  n = 0  

{ -- . p (lQ(m' n) Up' n) + Jkl ~(m' n) (plm' n)) dz (6.14) 
m = O  n = 0  

for the logarithmic convexity of G. In view of Schwartz's inequality (6.5) and Equation (4.4), 
we may conclude that 

(2) G - H e  =- < 0 (6.15) 

on the interval (tl, t2). It may be shown, after some manipulation, that this results in 

H(t) < [U(tl)](tz-tl/(t2-t~)[H(t2)] ('-tl)/(tz-tt) (6..16) 

Since by continuity H( t l )=0 ,  Equation (6.16) immediately shows that H ( t ) = 0  for tl < t <  t 2, 
and that H (t) = 0 for all t ~ [to, T). Therefore, the continuity of u i and cpl on • implies that they 
both vanish identically on "V, and thus proving the theorem for the aforementioned case, i.e., 
• = F = 0 .  

Lastly, attention is focused to the proper conditions which render z and F to zero. The terms 
of x and F consist of the inner products of traction- and deformation difference components on 
the lateral boundary and the faces, respectively. To begin with, it is evident that the boundary 
conditions (4.12-14) make both x and F zero. Further, to specify one member of each of the 
products : 

w(m,n),,(m,n) tk '~k , M(ln~'n)~p~ re'n) (6.17a) 

at each end x~--0 and X l=L  ~ and one member of each of the products: 

V q ( m , n ) , , ( r n , n )  a, D (m, n) r . (m ,n )  (6.17b) 
~ z k  ~ k  ~ v~.txc, k t//k 

at each point z along the length of rod for each pair of m ~ [0, M] and n ~ [0, N] in any solution 
starting from the initial conditions (4.17), (mixed-mixed boundary conditions) are sufficient to 
ensure a unique solution for the initial mixed boundary value problem in question. 

7.  C o n c l u s i o n s  

In the preceding work which was motivated by the kinematics appropriate to a micropolar rod, 
together with a suitable averaging procedure, we have established a dynamic, higher order and 
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deterministic theory for isothermal anisotropic rods. The one-dimensional, approximate 
governing equations of the theory have been formulated by a consistent and systematic 
reduction of the 3-D micropolar elastodynamics. By the proper truncation of the series, that is, 
selecting M and N, for particular applications, these equations incorporate as many higher 
order effects as deemed necessary. Hence the usual correction factors of rods (see, e.g., [7]) 
have been abrogated in a rational way. The theory presented governs all the types of motion 
of micropolar as well as non-polar rods of uniform cross-sections. 

It is worth remarking that the derivation of the kinematics and dynamical balance laws was 
independent of the rod material. The constitutive equations of Section 4 have been developed 
for linear micropolar elastic materials. However, the treatment of other classes of materials 
follows readily. In particular, for linear viscoelastic materials the elastic moduli in Equations 
(4.8) and (4.11) should be replaced by their corresponding Stieltjes convolutions given in [14], 
(see, e.g., [10] for non-polar case). Further, one needs simply to follow [2] in constructing the 
non-linear theory. 

Bernoulli's theory of micropolar rods, as a special case of the isotropic theory, has been 
given explicitly. By the use of this theory, then the longitudinal propagation of waves has been 
studied in detail. The arising of new class of waves due to microrotational motions has been 
demonstrated. This class of waves has its own speeds. Though they were uncoupled in our 
example, they become, in general, coupled and dispersive. 

Moreover, the uniqueness in the deterministic theory has been examined. A dynamic uni- 
queness theorem has been proved for the solutions of the initial mixed-boundary value 
problem defined by the governing equations. Our method of proof was based upon logarithmic 
convexity arguments (cf. [15] for piezoelectric crystal bars). Hence the use of definiteness 
assumption for the strain energy density has been excluded here. Apparently, this technique 
may be adopted to similar treatments of other one- and two-dimensional approximate con- 
tinuum theories. 

Furthermore, it may be noted that all of the results presented are in full agreement with the 
linear theory of non-polar rods [2,16] if the terms involving with couple stresses are dropped 
out. Finally, as stated earlier, the thermodynamical considerations are left untreated (see, e.g., 
[~17] for a discussion of 2-D continuum theory). A very general treatment, including irreversible 
stresses, is left for a future study. 

Acknowledgement 

The author is grateful to Kur. Alb. Turgay Beltan for his encouragement, and acknowledges 
the financial support provided by the Turkish Office of Naval Researches. 

REFERENCES 

[1] S. S. Antman, The Theory of Rods, Handbuch der Physik, Vol. Via/2, Berlin, Springer-Verlag (1972) 641-703. 
[2] M. C. D6kmeci, A General Theory of Elastic Beams, Int. J. Solids and Structures, 8 (1972) 1205-1222. 
[3] A. C. Eringen, Theory of Micropolar Elasticity, Fracture, Academic Press, New York 2 (1968) 621 729. 
[4] T. R. Tauchert, W. D. Clauss, Jr. and T. Ariman, The Linear Theory of Micropolar Thermoelasticity, Int. J. 

Engng. Sci., 6 (1968) 37-47. 
[5] R. D. Mindlin, Theory of Beams and Plates, Lecture Notes at Columbia University, New York (1956). 
[6] B. A. Boley and J. H. Weiner, Theory of Thermal Stresses, J. Wiley (1967). 
[7] R. D. Mindlin and H. Deresiewicz, Timoshenko's Shear Coefficient for Flexural Vibrations of Beams, Proc. 2nd 

U.S. National Congr. Appl. Mech., (1954) 175 178. 
[8] R. A. Grot and J. D. Achenhach, Linear Anisothermal Theory for a Viscoelastic Laminated Composite, Acta 

Mech., 9 (1970) 245-263. 
[9] M. C. D6kmeci and Mg. AlpD, A Continuum Theory for Viscoelastic Composite Beams, Rheologica Acta, 12 

(1973) 106-113. 
[10] H. Kolsky, Stress Waves in Solids, Dover Publ., New York (1963). 
[11] R. J. Knops and L. E. Payne, Uniqueness Theorems in Linear Elasticity, Springer-Verlag, Berlin (1972). 

Journal of Engineering Math., Vol. 9 (1975) 311-322 



322 M .  C. D6kmec i  

[12] O. D. Kellog, Foundations of Potential Theory, Dover Publ., New York (1953). 
[13] R. J. Knops and L. E. Payne, Uniqueness in Classical Elastodynamics, Arch. Rational Mech. Anal., 27 (1968) 

349-355. 
[14] A. Askar, A. S. (~akmak and T. Ariman, Linear Theory of Hereditary Micropolar Materials, Int. J. Engng. Sci., 

6 (1968) 283-293. 
[15] M. C. D6kmeci•A The•ry •f High Frequency Vibrati•ns •f Piez•e•ectric Crysta• Bars• •nt. J• S•lids and Structures• 

10 (1974) 401-409. 
[16] A. E. Green, N. Laws and P. M. Naghdi, A linear Theory of Straight Elastic Rods, Arch. Rational Mech. Anal.. 

25 (1967) 285-298. 
[17] M.C. D6kmeci, Thermodynamics of Sandwich Structures, 2nd Int. Conf. on Struct. Mechs. in Reactor Technology, 

6B, P.L. 2/8, Comm. of the European Communities (1973) 1-14. 

Journal of Engineering Math., Vol. 9 (1975) 311-322 


